
Chapter 4

Beam Dynamics and Beam Related
Systematic Errors

4.1 Introduction

In this chapter we discuss the behavior of a beam in a weak-focusing betatron, and the
features of the injection of a bunched beam that are important in the determination of ωa.
We also discuss the corrections to the measured frequency ωa that come from the vertical
betatron motion, and the fact that not all muons are at the magic momentum (central
radius) in the storage ring. The final section of this chapter discusses the systematic errors
that come from the pion and muon beamlines.

4.2 The Weak Focusing Betatron

The behavior of the beam in the (g − 2) storage ring directly affects the measurement of
aµ. Since the detector acceptance for decay electrons depends on the radial coordinate of
the muon at the point where it decays, coherent radial motion of the stored beam can
produce an amplitude modulation in the observed electron time spectrum. Resonances in
the storage ring can cause particle losses, thus distorting the observed time spectrum, and
must be avoided when choosing the operating parameters of the ring. Care is taken in setting
the frequency of coherent radial beam motion, the “coherent betatron oscillation” (CBO)
frequency, which lies close to the second harmonic of fa = ωa/(2π). If fCBO is too close to
2fa, the beat frequency, f− = fCBO−fa, complicates the extraction of fa from the data, and
can introduce a significant systematic error.

A pure quadrupole electric field provides a linear restoring force in the vertical direction,
and the combination of the (defocusing) electric field and the central magnetic field provides
a linear restoring force in the radial direction. The (g−2) ring is a weak focusing ring[1, 2, 3]
with the field index

n =
κR0

βB0

, (4.1)

where κ is the electric quadrupole gradient, B0 is the magnetic field strength, R0 is the
magic radius ≡ 7112 mm, and β is the relativistic velocity of the muon beam. For a ring
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with a uniform vertical dipole magnetic field and a uniform quadrupole field that provides
vertical focusing covering the full azimuth, the stored particles undergo simple harmonic
motion called betatron oscillations, in both the radial and vertical dimensions.

The horizontal and vertical motion are given by

x = xe + Ax cos(νx
s

R0

+ δx) and y = Ay cos(νy
s

R0

+ δy), (4.2)

where s is the arc length along the trajectory. The horizontal and vertical tunes are given
by

νx =
√

1− n and νy =
√
n. (4.3)

Several n - values were used in E821 for data acquisition: n = 0.137, 0.142 and 0.122. The
horizontal and vertical betatron frequencies are given by

fx = fC
√

1− n ' 0.929fC and fy = fC
√
n ' 0.37fC , (4.4)

where fC is the cyclotron frequency and the numerical values assume that n = 0.137. The
corresponding betatron wavelengths are λβx = 1.08(2πR0) and λβy = 2.7(2πR0). It is
important that the betatron wavelengths are not simple multiples of the circumference,
as this minimizes the ability of ring imperfections and higher multipoles to drive resonances
that would result in particle losses from the ring.

Table 4.1: Frequencies in the (g − 2) storage ring, assuming that the quadrupole field is
uniform in azimuth and that n = 0.137.

Quantity Expression Frequency [MHz] Period [µs]

fa
e

2πmc
aµB 0.228 4.37

fC
v

πR0
6.7 0.149

fx
√

1− nfc 6.23 0.160
fy

√
nfc 2.48 0.402

fCBO fc − fx 0.477 2.10
fVW fc − 2fy 1.74 0.574

As a reminder, the muon frequency, ωa is determined by the average magnetic field
weighted by the muon distribution and the magnetic anomaly:

~ωa = −Qe
m

aµ ~B −
aµ −

(
mc

p

)2
 ~β × ~E

c

 . (4.5)

The field index also determines the angular acceptance of the ring. The maximum hori-
zontal and vertical angles of the muon momentum are given by

θxmax =
xmax

√
1− n

R0

, and θymax =
ymax

√
n

R0

, (4.6)

where xmax, ymax = 45 mm is the radius of the storage aperture. For a betatron amplitude
Ax or Ay less than 45 mm, the maximum angle is reduced, as can be seen from the above
equations.
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4.3 Weak Focusing with Discrete Quadrupoles

For a ring with discrete quadrupoles, the focusing strength changes as a function of azimuth,
and the equation of motion looks like an oscillator whose spring constant changes as a
function of azimuth s. The motion is described by

x(s) = xe + A
√
β(s) cos(ψ(s) + δ), (4.7)

where β(s) is one of the three Courant-Snyder parameters.[2]
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Figure 4.1: (a) The horizontal (radial) and vertical beta functions for the E821 lattice. Note
the scale offset. (b) The horizontal (radial) and vertical alpha functions for the E821 lattice.
The n-value is 0.134 for both. (From Ref. [9]

The layout of the storage ring is shown in Figure 4.2(a). The four-fold symmetry of the
quadrupoles was chosen because it provided quadrupole-free regions for the kicker, tracking
chambers, fiber monitors, and trolley garage; but the most important benefit of four-fold

symmetry is to reduce the peak-to-peak betatron oscillation amplitudes, with
√
βmax/βmin =

1.03. The beta and alpha functions for the (g − 2) storage ring [9] are shown in Fig. 4.1.
Resonances in the storage ring will occur if Lνx + Mνy = N , where L, M and N are

integers, which must be avoided in choosing the operating value of the field index. These res-
onances form straight lines on the tune plane shown in Figure 4.2(b), which shows resonance
lines up to fifth order. The operating point lies on the circle ν2

x + ν2
y = 1.

The detector acceptance depends on the radial position of the muon when it decays, so
that any coherent radial beam motion will amplitude modulate the decay e± distribution.
This can be understood by examining Fig. 4.3. A narrow bunch of muons starts its radial
betatron oscillation at the point s = 0. The circumference of the ring is 2πρ so the x-axis
shows successive revolutions around the ring. The radial betatron wavelength is longer than
the circumference 2πρ. The rate at which the muon bunch moves toward and then away
from the detector is given by fCBO = fC − fx. The CBO wavelength is slightly over 14
revolutions of the ring.
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Figure 4.2: (a) The layout of the storage ring. (b)The tune plane, showing the three operating
points used during our three years of E821 running.

The presence of the CBO was first discovered in E821 from a plot that showed an az-
imuthal variation in the value of aµ shown in Fig. 4.4(a). When the CBO is included, this
azimuthal dependence disappears. Because the CBO wavelength is only slightly greater
than the circumference, its effect almost washes out when all detectors are added together.
Adding all detectors together was one of the techniques used in E821 to eliminate CBO
effect. However, the four-fold symmetry of the ring was broken by the kicker plates that
covered one section of the ring, so the cancellation was not perfect, but good enough. This
will most likely not be true in E989, so it is important to minimize the CBO effects. See
Chapter 13 for further discussion. Since some detectors saw more injection flash than others,
this meant that data at times earlier than around 40 µs was discarded in those analyses.
Other analyzers included the CBO and were able to use data from the “quiet” detectors at
earlier times.

The principal frequency will be the “Coherent Betatron Frequency,”

fCBO = fC − fx = (1−
√

1− n)fC ' 470 kHZ, (4.8)

which is the frequency at which a single fixed detector sees the beam coherently moving
back and forth radially. This CBO frequency is close to the second harmonic of the (g − 2)
frequency, fa = ωa/2π ' 228 Hz.

An alternative way of thinking about the CBO motion is to view the ring as a spec-
trometer where the inflector exit is imaged at each successive betatron wavelength, λβx . In
principle, an inverted image appears at half a betatron wavelength; but the radial image is
spoiled by the ±0.3% momentum dispersion of the ring. A given detector will see the beam
move radially with the CBO frequency, which is also the frequency at which the horizontal
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Figure 4.3: A cartoon of the coherent betatron motion (CBO). The radial CBO oscillation
is shown in blue for 3 successive betatron wavelengths, the cyclotron wavelength (the cir-
cumference) is marked by the black vertical lines. One detector location is shown. Since the
radial betatron wavelength is larger than the circumference, the detector sees the bunched
beam slowly move closer and then further away. The frequency that the beam appears to
move in and out is fCBO .
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Figure 4.4: The dependence of the extracted value of aµ vs. detector number. (a)With no
CBO in the fit function. (b) With CBO included in the fit function.

waist precesses around the ring. The vertical waist betatron wavelength is only 2.7 turns,
and disappears rather quickly. A number of frequencies in the ring are tabulated in Table 4.1

The CBO frequency and its sidebands are clearly visible in the Fourier transform to the
residuals from a fit to the five-parameter fitting function Equation 3.18, and are shown in
Figure 4.5. The vertical waist frequency is barely visible. In 2000, the quadrupole voltage
was set such that the CBO frequency was uncomfortably close to the second harmonic of
fa, thus placing the difference frequency f− = fCBO − fa next to fa. This nearby sideband
forced us to work very hard to understand the CBO and how its related phenomena affect
the value of ωa obtained from fits to the data. In 2001, we carefully set fCBO at two different
values, one well above, the other well below 2fa, which greatly reduced this problem.
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Figure 4.5: The Fourier transform to the residuals from a fit to the five-parameter function,
showing clearly the coherent beam frequencies. (a) is from 2000, when the CBO frequency
was close to 2ωa, and (b) shows the Fourier transform for the two n-values used in the 2001
run period.

4.3.1 Monitoring the Beam Profile

Knowledge of the distribution of stored beam in the storage ring is necessary for several
important corrections to the measured muon spin rotation frequency. There are three tools
available to determine this distribution:

1. Tracking chambers (see Chapter 19) that measure the trajectories of the decay positrons,
and reconstruct the vertical and horizontal spacial distribution of stored muons.

2. Measurement of the beam de-bunching after injection into the ring; called the “fast
rotation analysis”, which is discussed below.

3. Fiber beam monitors, which consist of x and y arrays of 0.5 mm scintillating fibers
that can be inserted into the storage region to measure the central part of the muon
distribution (see Chapter 20).

Because of the limited momentum acceptance of the Recycler Ring, the minimum proton
bunch width is 120 ns, as is shown in Fig. 7.5. In E821 the beam had an rms ∼ 25 ns. These
beam widths should be compared to the cyclotron period of the storage ring of 149 ns. We
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first discuss the E821 case, with its narrow beam. The momentum distribution of stored
muons produces a corresponding distribution in radii of curvature. The distributions depend
on the phase-space acceptance of the ring, the phase space of the beam at the injection point,
and the kick given to the beam at injection. The narrow 18 mm horizontal aperture of the
E821 inflector magnet restricts the stored momentum distribution to about ±0.15%. As the
muons circle the ring, the muons at smaller radius (lower momentum) eventually pass those
at larger radius repeatedly after multiple transits around the ring, and the bunch structure
largely disappears after 60 µs . This de-bunching can be seen in the E821 data in Figure 4.6
where the signal from a single detector is shown at two different times following injection.
The bunched beam is seen very clearly in the left figure, with the 149 ns cyclotron period
being obvious. The slow amplitude modulation comes from the (g− 2) precession. By 36 µs
the beam has largely de-bunched.

µ
e   Time Spectrum:   t = 6    s
+

µ
e   Time Spectrum:   t = 36    s
+

Figure 4.6: The time spectrum of a single E821 calorimeter soon after injection. The spikes
are separated by the cyclotron period of 149 ns. The time width of the beam at injection
was σ ' 23 ns.

Only muons with orbits centered at the central radius have the “magic” momentum,
so knowledge of the momentum distribution, or equivalently the distribution of equilibrium
radii, is important in determining the correction to ωa caused by the radial electric field used
for vertical focusing. Two methods of obtaining the distribution of equilibrium radii from the
beam debunching were employed in E821. One method uses a model of the time evolution
of the bunch structure. A second, alternative procedure uses modified Fourier techniques[8].

We discuss the former method, which was descended from the third CERN experiment,
and show a preliminary study that demonstrates the ability to use this method to determine
the distribution of equilibrium radii in E989. The initial bunched beam is modeled as an
ensemble of particles having an unknown frequency distribution and a narrow time spread.
The model assumes that every time slice of the beam has the same frequency profile but
the time width is left as a fit parameter, as is the exact injection time. The distribution
of angular frequencies will cause the bunched beam to spread out around the ring over
time, in a manner that depends uniquely on the momentum distribution. In particular,



96 BEAM DYNAMICS AND BEAM RELATED SYSTEMATIC ERRORS

the time evolution of any finite frequency slice is readily specified. A given narrow bin
of frequencies contributes linearly to the time spectrum. The total time spectrum is a
sum over many of these frequency components, with amplitudes that can be determined
using χ2 minimization. The momentum distribution is then determined from the frequency
distribution (or equivalently, from the radial distribution) by

p− p0

p0

= (1− n)
(
R−R0

R0

)
. (4.9)

Figure 4.7: The distribution of equilibrium radii obtained from the beam de-bunching. The
solid circles are from a de-bunching model fit to the data, and the dotted curve is obtained
from a modified Fourier analysis.

The result of the fast-rotation analysis from one of the E821 running periods is shown in
Fig. 4.7. The smooth curve is obtained from the modified Fourier transform analysis. The
peak of the distribution lies below the nominal magic radius of 7112 mm but the mean is
somewhat larger, 7116± 1 mm for this run period. The rms width is about 10 mm, and the
two methods give equivalent results.

Early in the planning for E989, it became clear that the Recycler beam would be much
wider than that produced by the BNL AGS. A preliminary beam profile, shown in Fig. 4.8(a),
was used to determine whether the fast rotation analysis could be used for such a wide beam.
The equilibrium distribution for the simulation was chosen to be Gaussian, with a mean
of 7112 mm and width 14.2 mm. The time structure seen by a single detector is shown
in Fig. 4.8(b), which can be compared to Fig. 4.6. The distribution of equilibrium radii
obtained from the analysis of the debunching is shown in Fig. 4.8(c). The input mean was
recovered in the analysis. Several questions will be addressed in future studies: What is the
connection between the t0 phase and the distribution of equilibrium radii? What happens if
the equilibrium radius is changed significantly by beam scraping after injection? Would this
be easier to detect and correct for with a narrower pulse?

While the scintillating-fiber monitors were not that useful in measuring the beam profile,
they were extremely useful in measuring the various frequencies in the muon beam motion.
The pulse height from a single fiber varies as the beam oscillates across it, and show clearly
the vertical and horizontal tunes as expected. In Figure 4.9, the horizontal beam centroid
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(a) (b) (c)

Figure 4.8: Simulations of a temporally wide beam. (a) An early version of the Recycler
output beam. (b) The time spectrum shortly after injection, which can be compared with the
left-hand E821 calorimeter after injection shown Fig. 4.6. (c) The distribution of equilibrium
radii extracted from the debunching in these simulated data.

motion is shown, with the quadrupoles powered asymmetrically during scraping, and then
symmetrically after scraping. A Fourier transform of the latter signal shows the expected
frequencies, including the cyclotron frequency of protons stored in the ring.
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Figure 4.9: (a) The horizontal beam centroid motion with beam scraping and without, using
data from the scintillating fiber hodoscopes; note the tune change between the two. (b) A
Fourier transform of the pulse from a single horizontal fiber, which shows clearly the vertical
waist motion, as well as the vertical tune. The presence of stored protons is clearly seen in
this frequency spectrum.
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4.4 Corrections to ωa: Pitch and Radial Electric Field

In the simplest case, in the absence of an electric field and when the velocity is perpendicular
to the magnetic field, the rate at which the spin turns relative to the momentum is given by

ωa = ωS − ωC = −
(
g − 2

2

)
Qe

m
B = −aQe

m
B (4.10)

The spin equation modified by the presence of an electric field was introduced earlier, with
the assumption that the velocity is transverse to the magnetic field. In the approximation
that all muons are at the magic momentum, γmagic = pmagic/mβ, the electric field does not
affect the spin rotation.

At the current and proposed levels of experimental precision, corrections for the approx-
imations that the velocity is perpendicular to the field and that all muons are at the magic
momentum must be made; the vertical betatron motion must be included, and the storage
ring momentum acceptance of ±0.5% means that the muons have a range of momenta not
quite at the magic momentum. Corrections to the measured value for ωa from these two
effects were made to the data in E821 after the data were un-blinded. In the 2001 data set,
the electric field correction for the low n-value data set was +0.47 ± 0.05 ppm. The pitch
correction was +0.27± 0.04 ppm. These are the only corrections made to the ωa data.

We sketch the derivation for E821 and E989 below[4]. For a general derivation the reader
is referred to References [6, 7].

For the more general case where ~β · ~B 6= 0 and ~E 6= 0, the cyclotron rotation frequency
becomes:

~ωC = −Qe
m

 ~B
γ
− γ

γ2 − 1

 ~β × ~E

c

 , (4.11)

and the spin rotation frequency becomes[5]

~ωS = −Qe
m

(g
2
− 1 +

1

γ

)
~B −

(
g

2
− 1

)
γ

γ + 1
(~β · ~B)~β −

(
g

2
− γ

γ + 1

) ~β × ~E

c

 . (4.12)

Substituting for aµ = (gµ − 2)/2, we find that the spin difference frequency is

~ωdiff = ~ωS − ~ωC = −Qe
m

aµ ~B − aµ
(

γ

γ + 1

)
(~β · ~B)~β −

(
aµ −

1

γ2 − 1

)
~β × ~E

c

 . (4.13)

Strictly speaking, the rate of change of the angle between the spin and the momentum
vectors, |~ωa|=’precession frequency’, is equal to |~ωdiff | only if ~ωS and ~ωC are parallel. For
the E821 and E989 experiments, the angle between ~ωS and ~ωC is always small and the rate
of oscillation of ~β out of pure circular motion is fast compared to ωa, allowing us in the
following discussion the make the approximation that ~ωa ' ~ωdiff . More general calculations,
where this approximation is not made, are found in References [6, 7]. In the E821 and E989
limits, the results presented here are the same as in the References.
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If ~β · ~B = 0, the angle between the momentum and spin reduces to the previously
introduced expression

~ωa ' ~ωdiff = − Qe

m

aµ ~B −
(
aµ −

1

γ2 − 1

)
~β × ~E

c

 . (4.14)

For γmagic = 29.3 (pµ = 3.09 GeV/c), the second term vanishes and the electric field does
not contribute to the spin precession. In that case, the spin precession is independent of
muon momentum; all muons precess at the same rate. Because of the high uniformity of the
B-field, a precision knowledge of the stored beam trajectories in the storage region is not
required.

First we calculate the effect of the electric field due to muons not exactly at γmagic = 29.3,

for the moment neglecting the ~β · ~B term. If the muon momentum is different from the magic
momentum, the precession frequency is given by

ω′a = ωa

[
1− β Er

cBy

(
1− 1

aµβ2γ2

)]
, (4.15)

where ωa = −aQe
m
B. Using p = βγm = (pm + ∆p), after some algebra one finds

ω′a − ωa
ωa

=
∆ωa
ωa

= −2
βEr
cBy

(
∆p

pm

)
. (4.16)

Thus the effect of the radial electric field reduces the observed frequency from the simple
frequency ωa given in Equation 4.13. Now

∆p

pm
= (1− n)

∆R

R0

= (1− n)
xe
R0

, (4.17)

where xe is the muon’s equilibrium radius of curvature relative to the central orbit. The
electric quadrupole field is

E = κx =
nβcBy

R0

x. (4.18)

We obtain
∆ω

ω
= −2n(1− n)β2xxe

R2
0

, (4.19)

so clearly the effect of muons not at the magic momentum is to lower the observed frequency.
For a quadrupole focusing field plus a uniform magnetic field, the time average of x is just
xe, so the electric field correction is given by

CE =
∆ω

ω
= −2n(1− n)β2 〈x2

e〉
R2

0

, (4.20)

where 〈x2
e〉 is determined from the fast-rotation analysis (see Figure 4.6). The uncertainty

on 〈x2
e〉 is added in quadrature with the uncertainty in the placement of the quadrupoles of

δR = ±0.5 mm (±0.01 ppm), and with the uncertainty in the mean vertical position of the
beam, ±1 mm (±0.02 ppm). For the low-n 2001 sub-period, CE = 0.47± 0.054 ppm.
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Figure 4.10: The coordinate system of the pitching muon. The angle ψ varies harmonically.
The vertical direction is ŷ and ẑ is the azimuthal (beam) direction.

The betatron oscillations of the stored muons lead to ~β · ~B 6= 0. Since the ~β · ~B term in
Equation 4.12 is quadratic in the components of ~β, its contribution to ~ωS will not generally
average to zero. Thus the spin precession frequency has a small dependence on the betatron
motion of the beam. It turns out that the only significant correction comes from the vertical
betatron oscillation; therefore it is called the pitch correction (see Equation 4.13). As the
muons undergo vertical betatron oscillations, the “pitch” angle between the momentum and
the horizontal (see Figure 4.10) varies harmonically as ψ = ψ0 cosωyt, where ωy is the vertical
betatron frequency ωy = 2πfy, given in Equation 4.4. In the approximation that all muons
are at the magic γ, we set aµ − 1/(γ2 − 1) = 0 in Equation 4.13 and obtain

~ωa ' ~ωdiff = −Qe
m

[
aµ ~B − aµ

(
γ

γ + 1

)
(~β · ~B)~β

]
. (4.21)

We adopt the (rotating) coordinate system shown in Figure 4.10, where ~β lies in the yz-plane,
z being the direction of propagation, and y being vertical in the storage ring. Assuming
~B = ŷBy, ~β = ẑβz + ŷβy = ẑβ cosψ + ŷβ sinψ, we find

~ω′a = −Qe
m

[aµŷBy − aµ
(

γ

γ + 1

)
βyBy(ẑβz + ŷβy)]. (4.22)

The small-angle approximation cosψ ' 1 and sinψ ' ψ gives the component equations

ω′ay = ωa

[
1−

(
γ − 1

γ

)
ψ2

]
(4.23)

and

ω′az = −ωa
(
γ − 1

γ

)
ψ. (4.24)

It is seen that the direction of ~ω′a in Figure 4.10 oscillates at the pitch frequency. We are
interested in the overall precession rate about the y-axis, which can be obtained in terms
of the period between the times that ψ = 0, or the average rate of precession during the
pitch period. To facilitate obtaining this average, we project ~ω′a onto axes parallel and

perpendicular to ~β, using a standard rotation. Using the small-angle expansions cosψ '
1− ψ2/2, and sinψ ' ψ, we find the transverse component of ω′a is given by

ω⊥ = ω′ay cosψ − ω′az sinψ ' ωa

[
1− ψ2

2

]
. (4.25)
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As can be seen from Table 4.1, the pitching frequency ωy is more than an order of
magnitude larger than the frequency ωa, so that ω‖ changes sign rapidly, thus averaging out
its effect on ω′a. Therefore ω′a ' ω⊥,

ω′a ' −
Qe

m
aµBy

(
1− ψ2

2

)
= − q

m
aµBy

(
1− ψ2

0cos
2ωyt

2

)
. (4.26)

Taking the time average yields a pitch correction

Cp = −〈ψ
2〉

2
= −〈ψ

2
0〉

4
= −n

4

〈y2〉
R2

0

, (4.27)

where we have used Equation 4.6 〈ψ2
0〉 = n〈y2〉/R2

0. The quantity 〈y2
0〉 was both determined

experimentally and from simulations. For the 2001 period, Cp = 0.27 ± 0.036 ppm, the

amount the precession frequency is lowered from that given in Equation 4.5 because ~β · ~B 6= 0.

We see that both the radial electric field and the vertical pitching motion lower the
observed frequency from the simple difference frequency ωa = (e/m)aµB, which enters into
our determination of aµ using Equation 3.23. Therefore our observed frequency must be
increased by these corrections to obtain the measured value of the anomaly. Note that if
ωy ' ωa the situation is more complicated, with a resonance behavior that is discussed in
References [6, 7].

4.5 Systematic Errors from the Pion and Muon Beam-

lines

Systematic effects on the measurement of ωa occur when the muon beam injected and stored
in the ring has a correlation between the muon’s spin direction and its momentum. For
a straight beamline, by symmetry, the averaged muon spin is in the forward direction for
all momenta muons. However, muons born from pion decay in a bending section of the
beamline will have a spin-momentum correlation, especially when the bend is used to make
a momentum selection. This is illustrated in Fig. 4.11. For E821 we had a 32 degree bend
with D1/D2 to select the pion momentum, and a 21 degree bend with D5 to select the muon
momentum. 57% of the pions were still left at the latter bend. A plot of the simulated muon
radial spin angle vs. momentum for the E821 beamline is shown in Fig. 4.12. The FNAL
experiment beamline bends are given in Table 4.2.

Table 4.2: FNAL beamline horizontal bends.
Bend Pions left dp/p Purpose

3 degree 96% ±10% Pion momentum selection
19 degree 41% ±2% M2 to M3

Delivery Ring (DR) 18% ±2% Remaining pions decay
After DR < 10−3 ±1% Muon momentum selection
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Figure 4.11: Cartoon of the E821 pion/muon beam going through D1/D2. The pions (blue
arrows) with momentum (1.017±0.010) times the magic momentum pass through the K1/K2
collimator (green rectangles) slits. Some pions decay after the D1/D2 bend and the decay
muons (red arrows) pass through the collimator slit. These muons may have approximately
magic momentum, and finally are stored in the muon storage ring. The muon spin direction
will then be correlated with it’s momentum.
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Figure 4.12: Simulation from Hugh Browns BETRAF program of the spin-momentum cor-
relation of muons entering the E821 storage ring, i.e., at the end of the inflector magnet
(symbols). The red line is linear fit to data points.



CHAPTER 4 103

The systematic effect is calculated from:〈
dΘspin

dt

〉
=

〈
dΘspin

dp

dp

dt

〉
(4.28)

where dp/dt occurs because the muon lifetime in the lab frame is gamma times the rest
frame lifetime. This gave an E821 beamline “differential decay” systematic effect on the
measurement of ωa of 0.05ppm, which was sufficiently small for E821 that we didn’t need to
correct for it.

The design philosophy for the FNAL beamline is significantly different from that of E821.
For E821 we had a beamline whose length was about the pion βγcτ , so to minimize the pion
“flash” we selected (1.017 ± 0.010) times the magic momentum pions after the target and
then selected (1.0 ± 0.005) times the magic momentum just before the muon storage ring.
For the FNAL beamline, effectively all the pions will have decayed before the muon storage
ring. The pion momentum selection right after the target is only a 3 degree bend and
selects ±10% in momentum. The capture probability Yµπ for the long straight section of
the beamline is shown in Fig. 4.13. With ±10% momentum acceptance, the pions which are
headed for the low momentum side of the beamline acceptance (see Fig. 4.11) can not give
a magic momentum muon. The pions which are headed for the high momentum side of the
beamline acceptance will be very inefficient in giving a magic momentum muon. Note that
this is suggested by Fig. 4.13, but we haven’t yet done the FNAL beamline simulation in the
bending regions. For later bends, a larger fraction of the pions will have decayed prior to
the bend compared to E821 (see Table 4.2). We believe this bending section of the beamline
systematic error will be less or equal the E821 error, but we haven’t properly simulated it
yet. The time line for the simulation calculation is given in the next section.
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Figure 4.13: Parametric phase space calculation of the π-µ capture probability in the straight
section of the FNAL pion decay channel. The muons have the magic momentum ±0.5%.
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Another systematic effect comes when the muons go around the delivery ring (DR). The
cyclotron and anomalous magnetic moment frequencies are:

ωc =
eB

mγ
ωa ≈

eaB

m
(4.29)

The former is exact while the latter is good to the sub-ppm level. The “spin tune” is
then:

Qspin =
ωa
ωc
≈ aγ (4.30)

The spin-momentum correlation after seven turns in the DR, is shown in Fig. 4.14. The
slope is less than the slope shown in Fig. 4.12. Of course, Fig. 4.14 is exact, but the energies of
the muons in the storage ring are different from their energies in the DR due to the material
the beam passes through between the DR and the storage ring. Once the simulation is
complete, we will correct our measured value of ωa for the beamline differential decay effect.
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Figure 4.14: Radial spin angle vs. momentum after seven turns in the DR.

Such correlations also couple to the lost muon systematic error. For E821, the differential
lost muon rate was about 10−3 per lifetime, while the differential decay rate was 1.2× 10−3

per lifetime. As discussed above, the FNAL differential lost muon rate will be less than 10−4

per lifetime.

4.5.1 Simulation plan and time line

We are planning to study the beamline systematic errors independently in two ways, us-
ing phase-space calculations and tracking. The phase-space calculations were first used by
W.M. Morse for E821 [10]. In E989 the phase-space calculation were used to guide the
design of the beamline [11] and to estimate the muon capture probability in the straight
section for this document. While the phase-space method is approximation, it gives quick
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insight into the problem and allows to make studies of an idealized beamline with required
characteristics without having the actual design of the beamline.

For tracking calculations several off-the-shelf accelerator packages have been considered,
TRANSPORT, TURTLE, DECAY TURTLE, MAD, TURTLE with MAD input. Suitable tracking pro-
gram for (g − 2) must be capable of i) describing decay of primary particles (pions) into
secondary particles (muons) and transporting the secondary particles and ii) transporting
spin through the beamline. It turned out that none of the existing programs can be used ”as
is” for the studies of systematic errors in (g − 2). Some modification are needed of any of
the existing programs. Lack of the source code in some cases (DECAY TURTLE) makes imple-
mentation of the missing features impossible. Our current plan for tracking simulations is to
use the program G4Beamline for the following reason i) the program is well-supported and
is under active development, ii) it is based on Geant4 toolkit which is widely used in physics
simulations, iii) spin tracking has been recently implemented in Geant4, iv) the accelerator
team is planning to use G4Beamline for beamline simulations, therefore the input configu-
ration file for the (g − 2) beamline will be provided by the experts, v) the common ground
between G4Beamline and the downstream simulation program g2RingSim for the (g − 2)
storage ring will simplify the task of combining the two programs together for back-to-back
simulations.

Recently, a preliminary version of the G4Beamline for (g−2) was released with significant
boost in performance and bug fixes. The construction of the (g − 2) beamline model for
G4Beamline is in progress. Basing on our experience, we expect to get the results from
G4Beamline simulations in six months.

G4Beamline simulations for the straight section will be confronted with the phase space
simulation to cross-check the two codes. In parallel, we are planning to extend the phase
space method to the bending sections of the beamline (beamline elements with dispersion).

Finally, the production and collection of pions in the target station was simulated by
MARS (see section 7.4.1). We are planning to confront MARS and G4Beamline simulations of
the target station to cross-check the two codes.

4.5.2 Coherent Betatron Oscillation Systematic Error Simulations

The theory of coherent betatron oscillations (CBO) is given in the Beam Dynamics Section.
Briefly, the E821 inflector was not well matched to the storage ring [12]. Furthermore, the
E821 kicker did not provide the optimal kick. Large coherent betatron oscillations were
observed in E821. These affect both the spin motion of the muon and the decay positron
acceptance. Fig. 4.15 shows the spin precession from just the muon g−2, and the additional
spin precession due to a fully coherent betatraon oscillation. The latter amplitude is 10−4

times the former. The CBO amplitude within the muon dN/dt plot for each detector station
is shown in Fig. 4.16. The E821 kicker had thicker plates than the E821 electric quads. The
detectors shadowed by the kicker plates (detectors 7-9) had about twice the CBO amplitude
compared to the detectors shadowed by the quad plates (4-6, 10-12, 16-18, and 22-24). The
dominant CBO modulation effect seen in the muon dN/dt plot is due to the decay positron
acceptance. The E989 inflector and kicker teams are studying upgrades to the E821 design.
The simulated CBO mean and width from a E989 kicker study with the E821 inflector is
shown in Fig. 4.17. The E989 mean CBO modulation in this figure is about three times less
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Figure 4.15: Spin precession from just the muon g−2 (lhs), and the additional spin precession
due to a fully coherent betatraon oscillation (rhs).

than observed in E821. The E989 width modulation is about the same as observed in E821.
The muon dN/dt multi-parameter function [12] is shown below. Fig. 4.18 show the effect

of the CBO on the fitted muon g − 2 frequency vs. the CBO frequency when equ. 4.31 was
used to generate the data with the E821 parameters, but the fit was done with only the
V − A theory five parameters: N0, τµ, A, ωa, and φ. The E821 and E989 CBO frequencies
are indicated. E989 will be 30% less sensitive to a given CBO modulation compared to E821
(2001 data). Since one never really understands systematic errors, our goal is to make all
the beam dynamics systematic errors as low as reasonably achievable, i.e., zero, if possible.

The E821 muon dN/dt analyzers found that the CBO de-coherence when fit to an expo-
nential gave τCBO ≈ 0.1− 0.14 ms [12] for different running periods. Fig. 4.19 shows the fit
to one of the running periods from 2001.

N(t) =
N0

γτµ
e−t/γτµ · Λ(t) · V (t) ·B(t) · C(t) · [1− A(t) cos(ωat+ φ(t))] (4.31)

Λ(t) = 1− Aloss

t∫
0

L(t)e−t/γτµdt

V (t) = 1− e−t/τVWAVW cos(ωVWt+ φVW)

B(t) = 1− Abre
−t/τbr

C(t) = 1− e−t/τCBOA1 cos(ωCBOt+ φ1)
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Figure 4.16: E821 observed and positron acceptance simulated CBO A1 amplitudes vs.
detector number. Detectors 7-9 were shadowed by the E821 kicker plates. The inflector
angle was changed between the 1999 and 2000 runs.

Figure 4.17: E989 kicker simulation showing the CBO modulation of the mean, and the
width of the muon distribution vs. turn number [13]. The modulation of the mean is three
times less than E821. The width modulation is about the same as E821.
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Figure 4.18: Effect of the CBO on the fitted muon g − 2 frequency vs. CBO frequency
(see text for discussion). The E821 CBO frequencies and the planned E989 frequency are
indicated.

Figure 4.19: Time distribution of residuals from the 5-parameter fit at the CBO frequency
for one set of E821 2001 run.
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Figure 4.20: E821 de-coherence of the fast rotation envelope (red points with black statistical
errors) from the 2000 run. Blue is after binning at the revolution period, before accidental
overlaps were corrected.

A(t) = A
(
1− e−t/τCBOA2 cos(ωCBOt+ φ2)

)
φ(t) = φ0 + e−t/τCBOA3 cos(ωCBOt+ φ3) (4.32)

Next we discuss the calculation of CBO de-coherence, due to the muons having different
beam dynamics frequencies.

fCBO = frev (1−Qx) (4.33)

dfCBO

fCBO

=
dfrev

frev

⊕ dQx

1−Qx

(4.34)

The E821 de-coherence of the revolution frequency is shown in Fig. 4.20. dfrev/frev ≈
1.5×10−3. From the muon dN/dt plot fits, dfCBO/fCBO ≈ 8×10−3. This gives dQx ≈ 5×10−4.
This is the main source of the de-coherence of the coherent betatron oscillations.

Ref. [15] simulated the E821 2000 run CBO de-coherence due to the tune spread from
the electric quadrpoles [14]. The simulated mean and width at the CBO frequency is shown
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Figure 4.21: Ref. [15] horizontal mean and width modulation at the CBO frequency.

in Fig. 4.21. The mean had only the CBO frequency, but the width had both the CBO
frequency, and twice the CBO frequency [12]. The muon dN/dt plot had both the CBO
frequency, and twice the CBO frequency. Ref. [15] then concluded that: “The beam width
contributes 20-30% to the observed CBO signal for detectors 10-24 and starting at 25 µs”.
However, this logic is incorrect, as the CBO can have only the first harmonic, for example,
but if the detector acceptance is non-linear vs. the betatron x-x′ oscillations, the other
harmonics will appear in the muon dN/dt plot. Nevertheless, Fig. 4.22 shows 70% mean and
30% width modulation (points labeled sum), and an exponential with τ = 114 µs, which
matches the Fig. 4.19 time distribution quite well. The fraction of the CBO modulation in
the muon dN/dt plot due to the mean, and the fraction due to the width will be determined
in the simulation study. The CBO simulation will determine the E989 C(t), A(t), and φ(t)
parameters for the kicker, quad, and free detectors, and the CBO systematic error for the Q
and T methods of analysis.

4.5.3 Lost Muons

A systematic error occurs if the muons lost from the storage ring at late times have a different
average spin direction compared to the stored muons. This difference in the spin direction
occurs due to the production and storage processes. The E821 storage ring injection capture
efficiency was (4 ± 1)% [12]. Thus about 96% of the injected muons were lost. The E821
muon loss rate after 30 µs was lost/stored ≈ 10−3, or lost/injected ≈ 4× 10−5. Our goal is
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Figure 4.22: 70% mean and 30% width modulation (sum), and exponential with τ = 114 µs.

to reduce the lost muon rate after 30 µs by at least an order of magnitude compared to the
E821 rate.

A schematic drawing of the E821 muon storage ring vacuum chamber is shown in Fig. 4.23.
Some of the E821 full collimators were changed to 1/2-collimators, since the E821 kicker did
not give an adequate kick for the first turn (see Kicker Section). For E989, all the collimators
will be full collimators. The distortion of the closed orbit due to non-perfect magnetic fields,
for uniform and perfect electric quads, is:

∆Xe(Θ) ≈ R0

B0

∞∑
N=1

ByNC cos(NΘ) +ByNS sin(NΘ)

−N2 +Q2
x

(4.35)

∆Ye(Θ) ≈ R0

B0

∞∑
N=0

BRNC cos(NΘ) +BRNS sin(NΘ)

−N2 +Q2
y

(4.36)

(4.37)

Fig. 4.24 shows the lost muon results of the E989 phase space model by a BNL high
school summer student. One can readily see the effect a non-uniform magnetic field has on
the muon losses. This study was limited by statistics, but the zero values for lost muons
have at least a factor of ten fewer lost muons than E821 after 30 µs. However, this study
assumed infinitely thick collimators, i.e., the muon was lost as soon as it hit a collimator. We
next need a tracking study, including finite electric quads with non-perfect fields, following
the muon after it first strikes the collimator, etc.
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Figure 4.23: E821 vacuum chambers showing the locations of the electric quads and colli-
mators.
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Figure 4.24: Lost muons after 30s from a phase space study vs. magnetic field uniformity,

for both circular and elliptical collimators. Elliptical collimators follow
√
βx,y.

4.5.4 Electric Field and Pitch Corrections

The theory of the electric and pitch corrections is given in the Beam Dynamics Section.
The E821 electric field and pitch corrections to the anomaly were (0.47 ± 0.05) ppm and
(0.27± 0.04) ppm, respectively. The table below gives more detail on the systematic errors.

Systematic Effect E correction Pitch
Difference Between Data and Simulation ±50 ppb ±30 ppb

Beam vs. Quad Electrode Position Uncertainty ±20 ppb ±20 ppb

Our E989 goal is < 30 ppb for the electric field and pitch corrections combined. The
electric field correction requires a precise knowledge of the momentum distribution of the
stored muons. This is obtained by the so-called “fast rotation analysis”, where the beam is
observed to de-bunch as it rotates around the ring. The equilibrium closed orbit is given by:

xe = D
dp

p
(4.38)

For E821 the head and the tail of the incoming bunch had identical momentum distribu-
tions. This will not be the acse for the E989 beam, since the beam goes around the Delivery
Ring (DR) a number of times. The DR has 〈D〉 = 2 m. Some pions decay to muons in the
DR, so we have to track the pion momentum, which is higher than the muon momentum, and
then the muon momentum. For muons which have five turns around the DR, for example:



114 BEAM DYNAMICS AND BEAM RELATED SYSTEMATIC ERRORS

δL ≈ 10π(2m)
dp

p
≈ 63m

dp

p
(4.39)

δt ≈ 63m

c

dp

p
≈ 210ns

dp

p
(4.40)

Putting in dp/p of several parts per thousand shows that this will be a small effect, but
it will be studied in the simulation.

4.5.5 Collimator Study

The E821 collimators were IR = 45 mm, OR = 55 mm, and thickness 3 mm Cu [12]. The
E821 collimator design was based on a “back of the envelope” calculation. For E989 we
need a real simulation to minimize the lost muon systematic error, maximize the positron
detection, and allow adequate space for supplementary detectors.

4.5.6 Simulation Responsibilities and Schedule

Each calculation listed needs to be done independently by at least two different people, or by
one person but with a different method, i.e., analytical calculation, phase space simulation,
tracking simulation, etc. BDT = Beam Dynamics Team (BNL, FNAL, Univ. Mississippi,
and CAST, Korea). The dates shown are estimates of when the simulation studies will be
completed by calendar year and quarter.

Differential decay Q2 2015

1. Kicker – BDT

2. Muon spin in DR – BDT

3. Pion decays in bends – BDT

4. Straw system – Detector Team

CBO Q3 2015

1. F (t) for the de-coherence – BDT

2. Kicker plate study – BDT

3. Effect on E989 ωa for Q method – BDT

4. Effect on E989 ωa for T method – BDT

5. Straw system/fiber beam monitor system – Detector Team

6. Hardware CBO damping – BDT

Lost muons Q1 2015

1. Phase space – BDT
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2. Tracking – BDT

3. New “scraping” hardware? – BDT

Collimators (analytical, phase space, tracking) Q1 2015

1. Number and Thickness – lost muon study – BDT

2. Number and Thickness – decay positron study – Detector Team

Pitch Correction Q2 2015

1. Straw system/fiber beam monitor system – Detector Team

2. Beam Dynamics – BDT

E field Correction Q2 2015

1. Fast rotation – BDT

2. Beam Dynamics – BDT

Distortion of closed orbit due to non-perfect electric quad fields Q2 2014- Finished [17]

1. Analytical calculation – BDT

2. Tracking – BDT

Distortion of closed orbit due to non-perfect magnetic fields Q2 2014 - Finished [18]

1. Analytical calculation of effect on average magnetic field – BDT/Magnetic Field
Team

2. Tracking – BDT

Geometric Phase Q2 2014 - Finished [16]

1. Analytical calculation – BDT

2. Tracking – BDT
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